Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Elmar Hecht‡

Universität Leipzig, Institut für Anorganische Chemie, Johannisallee 29, D-04103 Leipzig, Germany

 Present address: SusTech Darmstadt GmbH & Co KG, Petersenstraße 20, D-64287 Darmstadt, Germany

Correspondence e-mail: elmar.hecht@sustech.de

Key indicators

Single-crystal X-ray study T = 213 KMean $\sigma(\text{N-C}) = 0.006 \text{ Å}$ R factor = 0.032 wR factor = 0.079 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(μ -N,N-dimethylhydrazido- $\kappa^2 N'$:N')bis[dimethylgallium(III)]

The title centrosymmetric coordination compound, $[Ga_2(CH_3)_4(C_2H_7N_2)_2]$, contains tetrahedral Ga atoms bonded to two N atoms of the hydrazide ligands and two C atoms of the methyl groups. The Ga atoms are bridged by hydrazide moieties, creating a planar four-membered Ga_2N_2 ring, which may be considered as the main structural feature. The Ga—N bond distances are equal [2.018 (2) and 2.019 (2) Å] within experimental error.

Received 19 August 2004 Accepted 23 August 2004 Online 28 August 2004

Comment

Amide and hydrazide derivatives of gallium have attracted considerable interest due to their application as precursors for the formation of gallium nitride, which is widely used as a semiconducting material. The structures of several complexes of aluminium and gallium with amide ligands have been reported (Carmalt, 2001; Carmalt *et al.*, 2001). Compounds of this type usually form dimeric molecules comprising a central four-membered Ga_2N_2 ring as the main structural feature.

The Ga atoms in the title compound, (I), adopt a tetrahedral geometry formed by two N atoms of the bridging hydrazide ligand [Ga-N = 2.018 (2) and 2.019 (2) Å] and two C atoms of methyl groups [Ga-C = 1.966 (4) and 1.970 (3) Å]. As a result of the bridging by the hydrazide ligands, centrosymmetric dimeric molecules are formed.

Experimental

The title compound, (I), was prepared according to the procedure of Uhl *et al.* (2001) by reaction of equimolar amounts (20 mmol) of trimethylgallium with *N*,*N*-dimethylhydrazine in toluene (50 ml). The reaction mixture was refluxed for 6 h and the solvent removed *in vacuo* to give a colourless precipitate. The resulting solid was collected and dried *in vacuo*. Suitable crystals were obtained by cooling a saturated solution of (I) in *n*-pentane. Analysis calculated for C₈H₂₆Ga₂N₄: C 29.81, H 8.07, Ga 43.47%; found: C 30.01, H 8.23, Ga 43.68%.

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Z = 1

 $D_{\rm r} = 1.367 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 1543

Mo $K\alpha$ radiation

reflections $\theta = 2-27^{\circ}$

 $\mu = 3.47 \text{ mm}^{-1}$

T = 213 (2) K

 $R_{\rm int} = 0.024$

 $\theta_{\rm max} = 27.1^{\circ}$

 $h=-8\rightarrow 8$

 $\begin{array}{l} k = -10 \rightarrow 9 \\ l = -10 \rightarrow 10 \end{array}$

refinement

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.84 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$

Block, colourless

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

1543 independent reflections

1383 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0491P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

Crystal data

 $\begin{array}{l} [\text{Ga}_2(\text{CH}_3)_4(\text{C}_2\text{H}_7\text{N}_2)_2] \\ M_r = 317.77 \\ \text{Triclinic, } P\overline{1} \\ a = 6.7439 (1) \text{ Å} \\ b = 8.2016 (1) \text{ Å} \\ c = 8.2846 (2) \text{ Å} \\ \alpha = 114.052 (1)^{\circ} \\ \beta = 95.798 (1)^{\circ} \\ \gamma = 107.406 (1)^{\circ} \\ V = 385.991 (12) \text{ Å}^3 \end{array}$ Data collection

Bruker SMART CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.388, T_{max} = 0.500$ 3427 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.080$ S = 1.071543 reflections 93 parameters

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Ga1-C2	1.966 (4)	Ga1-N1	2.019 (2)
Ga1-C1	1.970 (3)	Ga1···Ga1 ⁱ	2.9397 (6)
Ga1-N1 ⁱ	2.018 (2)	N1-N2	1.452 (3)
C2-Ga1-N1	112.50 (15)	N2-N1-Ga1	118.71 (19)
C1-Ga1-N1	105.73 (15)	Ga1 ⁱ -N1-Ga1	93.46 (9)
N2-N1-Ga1 ⁱ	117.22 (18)		
Summatry and a (i)	(1)) 7		

Symmetry code: (i) -x, 1 - y, 2 - z.

H atoms on C2 and C3 were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.97 Å and a common U_{iso} value. All other H atoms were located in a difference Fourier map and freely refined.

Figure 1

View of the dimeric molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, 1 - y, 2 - z.]

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2003).

Financial support from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

- Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carmalt, C. J. (2001). Coord. Chem. Rev. 223, 217-264.
- Carmalt, C. J., Mileham, J. D., White, A. J. P., Williams, D. J. & Steed, J. W. (2001). Inorg. Chem. 40, 6035–6038.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Uhl, W., Molter, J. & Neumüller, B. (2001). Inorg. Chem. 40, 2011-2014.